hierarc.Likelihood package¶
Subpackages¶
- hierarc.Likelihood.LensLikelihood package
- Submodules
- hierarc.Likelihood.LensLikelihood.base_lens_likelihood module
- hierarc.Likelihood.LensLikelihood.ddt_dd_gauss_likelihood module
- hierarc.Likelihood.LensLikelihood.ddt_dd_kde_likelihood module
- hierarc.Likelihood.LensLikelihood.ddt_gauss_kin_likelihood module
- hierarc.Likelihood.LensLikelihood.ddt_gauss_likelihood module
- hierarc.Likelihood.LensLikelihood.ddt_hist_kin_likelihood module
- hierarc.Likelihood.LensLikelihood.ddt_hist_likelihood module
- hierarc.Likelihood.LensLikelihood.ddt_lognorm_likelihood module
- hierarc.Likelihood.LensLikelihood.ds_dds_gauss_likelihood module
- hierarc.Likelihood.LensLikelihood.kin_likelihood module
- hierarc.Likelihood.LensLikelihood.mag_likelihood module
- hierarc.Likelihood.LensLikelihood.td_mag_likelihood module
- hierarc.Likelihood.LensLikelihood.td_mag_magnitude_likelihood module
- Module contents
- hierarc.Likelihood.SneLikelihood package
Submodules¶
hierarc.Likelihood.anisotropy_scaling module¶
hierarc.Likelihood.cosmo_likelihood module¶
- class hierarc.Likelihood.cosmo_likelihood.CosmoLikelihood(kwargs_likelihood_list, cosmology, kwargs_model, kwargs_bounds, sne_likelihood=None, kwargs_sne_likelihood=None, KDE_likelihood_chain=None, kwargs_kde_likelihood=None, normalized=False, custom_prior=None, interpolate_cosmo=True, num_redshift_interp=100, cosmo_fixed=None)[source]¶
Bases:
object
This class contains the likelihood function of the Strong lensing analysis.
- cosmo_instance(kwargs_cosmo)[source]¶
- Parameters:
kwargs_cosmo – cosmology parameter keyword argument list
- Returns:
~astropy.cosmology (or equivalent interpolation scheme class)
- likelihood(args, kwargs_cosmo_interp=None, verbose=False)[source]¶
- Parameters:
args – list of sampled parameters
kwargs_cosmo_interp (dict) – interpolated angular diameter distances with ‘ang_diameter_distances’ and ‘redshifts’, and optionally ‘ok’ and ‘K’ in none-flat scenarios
verbose (bool) – If true, prints intermediate outputs of likelihood calculation
- Returns:
log likelihood of the combined lenses
hierarc.Likelihood.hierarchy_likelihood module¶
- class hierarc.Likelihood.hierarchy_likelihood.LensLikelihood(z_lens, z_source, name='name', likelihood_type='TDKin', lambda_scaling_property=0, lambda_scaling_property_beta=0, kwargs_lens_properties=None, global_los_distribution=False, mst_ifu=False, anisotropy_model='NONE', anisotropy_sampling=False, anisotropy_distribution='NONE', anisotropy_parameterization='beta', los_distributions=None, lambda_mst_distribution='NONE', gamma_in_sampling=False, gamma_in_distribution='NONE', log_m2l_sampling=False, log_m2l_distribution='NONE', alpha_lambda_sampling=False, beta_lambda_sampling=False, alpha_gamma_in_sampling=False, alpha_log_m2l_sampling=False, log_scatter=False, gamma_pl_index=None, gamma_pl_global_sampling=False, gamma_pl_global_dist='NONE', kin_scaling_param_list=None, j_kin_scaling_param_axes=None, j_kin_scaling_grid_list=None, num_distribution_draws=50, normalized=True, los_distribution_individual=None, kwargs_los_individual=None, prior_list=None, **kwargs_likelihood)[source]¶
Bases:
TransformedCosmography
,LensLikelihoodBase
,KinScaling
Master class containing the likelihood definitions of different analysis for a single lens.
- angular_diameter_distances(cosmo)[source]¶
Time-delay distance Ddt, angular diameter distance to the lens (dd)
- Parameters:
cosmo – astropy.cosmology instance (or equivalent with interpolation)
- Returns:
ddt, dd in units physical Mpc
- check_dist(kwargs_lens, kwargs_kin, kwargs_source, kwargs_los)[source]¶
Checks if the provided keyword arguments describe a distribution function of hyperparameters or are single values.
- Parameters:
kwargs_lens – lens model hyperparameter keywords
kwargs_kin – kinematic model hyperparameter keywords
kwargs_source – source brightness hyperparameter keywords
kwargs_los – list of dictionaries for line of sight hyperparameters
- Returns:
bool, True if delta function, else False
- ddt_dd_model_prediction(cosmo, kwargs_lens=None, kwargs_los=None)[source]¶
Predicts the model uncertainty corrected ddt prediction of the applied model (e.g. power-law)
- Parameters:
cosmo – astropy.cosmology instance
kwargs_lens – keywords of the hyper parameters of the lens model
kwargs_los – line of slight list of dictionaries
- Returns:
ddt_model mean, ddt_model sigma, dd_model mean, dd_model sigma
- static draw_source(mu_sne=1, sigma_sne=0, lum_dist=0, **kwargs)[source]¶
Draws a source magnitude from a distribution specified by population parameters.
- Parameters:
mu_sne – mean magnitude of SNe
sigma_sne – std of magnitude distribution of SNe relative to the mean magnitude
lum_dist – luminosity distance (astronomical magnitude scaling of defined brightness to the source redshift)
- Returns:
realization of source amplitude given distribution
- hyper_param_likelihood(ddt, dd, delta_lum_dist, beta_dsp=None, kwargs_lens=None, kwargs_kin=None, kwargs_source=None, kwargs_los=None, cosmo=None)[source]¶
Log likelihood of the data of a lens given a model (defined with hyperparameters) and cosmological distances.
- Parameters:
ddt – time-delay distance
dd – angular diameter distance to the deflector
delta_lum_dist – relative luminosity distance to pivot redshift
beta_dsp – Model prediction of ratio of Einstein radii theta_E_1 / theta_E_2
kwargs_lens – keywords of the hyperparameters of the lens model
kwargs_kin – keyword arguments of the kinematic model hyperparameters
kwargs_source – keyword argument of the source model (such as SNe)
kwargs_los – list of keyword arguments of global line of sight distributions
cosmo – ~astropy.cosmology instance
- Returns:
log likelihood given the single lens analysis for the given hyperparameter
- lens_log_likelihood(cosmo, kwargs_lens=None, kwargs_kin=None, kwargs_source=None, kwargs_los=None, verbose=False)[source]¶
Log likelihood of the data of a lens given a model (defined with hyper- parameters) and cosmology.
- Parameters:
cosmo – astropy.cosmology instance
kwargs_lens – keywords of the hyperparameters of the lens model
kwargs_kin – keyword arguments of the kinematic model hyperparameters
kwargs_source – keyword argument of the source model (such as SNe)
kwargs_los – list of keyword arguments of global line of sight distributions
verbose (bool) – If true, prints intermediate outputs of likelihood calculation
- Returns:
log likelihood of the data given the model
- log_likelihood_single(ddt, dd, delta_lum_dist, beta_dsp, kwargs_lens, kwargs_kin, kwargs_source, kwargs_los=None, sigma_v_sys_error=None)[source]¶
Log likelihood of the data of a lens given a specific model (as a draw from hyperparameters) and cosmological distances.
- Parameters:
ddt – time-delay distance
dd – angular diameter distance to the deflector
delta_lum_dist – relative luminosity distance to pivot redshift
beta_dsp – Model prediction of ratio of Einstein radii theta_E_1 / theta_E_2
kwargs_lens – keywords of the hyperparameters of the lens model
kwargs_kin – keyword arguments of the kinematic model hyperparameters
kwargs_source – keyword arguments of source brightness
kwargs_los – line of sight list of dictionaries
sigma_v_sys_error – unaccounted uncertainty in the velocity dispersion measurement
- Returns:
log likelihood given the single lens analysis for a single (random) realization of the hyperparameter distribution
- luminosity_distance_modulus(cosmo, z_apparent_m_anchor)[source]¶
The difference in luminosity distance between a pivot redshift (z_apparent_m_anchor) and the source redshift (effectively the ratio as this is the magnitude transform)
- Parameters:
cosmo – astropy.cosmology instance (or equivalent with interpolation)
z_apparent_m_anchor – redshift of pivot/anchor at which the apparent SNe brightness is defined relative to
- Returns:
lum_dist(z_source) - lum_dist(z_pivot)
- sigma_v_measured_vs_predict(cosmo, kwargs_lens=None, kwargs_kin=None, kwargs_los=None)[source]¶
Mean and error covariance of velocity dispersion measurement mean and error covariance of velocity dispersion predictions.
- Parameters:
cosmo – astropy.cosmology instance
kwargs_lens – keywords of the hyperparameters of the lens model
kwargs_kin – keyword arguments of the kinematic model hyperparameters
kwargs_los – line of sight parapers
- Returns:
sigma_v_measurement, cov_error_measurement, sigma_v_predict_mean, cov_error_predict
hierarc.Likelihood.lens_sample_likelihood module¶
- class hierarc.Likelihood.lens_sample_likelihood.LensSampleLikelihood(kwargs_lens_list, normalized=False, kwargs_global_model=None)[source]¶
Bases:
object
Class to evaluate the likelihood of a cosmology given a sample of angular diameter posteriors Currently this class does not include possible covariances between the lens samples.
- property gamma_pl_num¶
Number of power-law density slope parameters being sampled on individual lenses.
- Returns:
number of power-law density slope parameters being sampled on individual lenses
- log_likelihood(cosmo, kwargs_lens=None, kwargs_kin=None, kwargs_source=None, kwargs_los=None, verbose=False)[source]¶
- Parameters:
cosmo – astropy.cosmology instance
kwargs_lens – keywords of the parameters of the lens model
kwargs_kin – keyword arguments of the kinematic model
kwargs_source – keyword argument of the source model (such as SNe)
kwargs_los – line of sight keyword argument list
verbose (bool) – If true, prints intermediate outputs of likelihood calculation
- Returns:
log likelihood of the combined lenses
hierarc.Likelihood.transformed_cosmography module¶
- class hierarc.Likelihood.transformed_cosmography.TransformedCosmography(z_lens, z_source)[source]¶
Bases:
object
Class to manage hierarchical hyper-parameter that impact the cosmographic posterior interpretation of individual lenses.
- displace_prediction(ddt, dd, gamma_ppn=1, lambda_mst=1, kappa_ext=0, mag_source=0)[source]¶
Here we effectively change the posteriors of the lens, but rather than changing the instance of the KDE we displace the predicted angular diameter distances in the opposite direction The displacements form different effects are multiplicative and thus invariant under the order those displacements are applied.
- Parameters:
ddt – time-delay distance
dd – angular diameter distance to the deflector
lambda_mst – overall global mass-sheet transform applied on the sample, lambda_mst=1 corresponds to the input model
gamma_ppn – post-newtonian gravity parameter (=1 is GR)
kappa_ext – external convergence to be added on top of the D_dt posterior
mag_source – source magnitude (attention, log scale, thus transform needs to be changed!)
- Returns:
ddt, dd, mag_source