Source code for hierarc.Likelihood.hierarchy_likelihood

from hierarc.Likelihood.transformed_cosmography import TransformedCosmography
from hierarc.Likelihood.LensLikelihood.base_lens_likelihood import LensLikelihoodBase
from hierarc.Likelihood.anisotropy_scaling import AnisotropyScalingIFU
from hierarc.Util.distribution_util import PDFSampling
import numpy as np
import copy


[docs]class LensLikelihood(TransformedCosmography, LensLikelihoodBase, AnisotropyScalingIFU): """ master class containing the likelihood definitions of different analysis for s single lens """ def __init__(self, z_lens, z_source, name='name', likelihood_type='TDKin', anisotropy_model='NONE', ani_param_array=None, ani_scaling_array_list=None, ani_scaling_array=None, num_distribution_draws=50, kappa_ext_bias=False, kappa_pdf=None, kappa_bin_edges=None, mst_ifu=False, lambda_scaling_property=0,lambda_scaling_property_beta=0, normalized=False, kwargs_lens_properties=None, **kwargs_likelihood): """ :param z_lens: lens redshift :param z_source: source redshift :param name: string (optional) to name the specific lens :param likelihood_type: string to specify the likelihood type :param ani_param_array: array of anisotropy parameter values for which the kinematics are predicted :param ani_scaling_array: velocity dispersion sigma**2 scaling (also J scaling) of anisotropy parameter relative to default prediction. The scaling corresponds to the ani_param_array parameter spacing (to generate an interpolation function). A value =1 in ani_scaling_array results in the value stored in the provided J() predictions. :param ani_scaling_array_list: list of array with the scalings of J() for each IFU :param num_distribution_draws: int, number of distribution draws from the likelihood that are being averaged over :param kappa_ext_bias: bool, if True incorporates the global external selection function into the likelihood. If False, the likelihood needs to incorporate the individual selection function with sufficient accuracy. :param kappa_pdf: array of probability density function of the external convergence distribution binned according to kappa_bin_edges :param kappa_bin_edges: array of length (len(kappa_pdf)+1), bin edges of the kappa PDF :param mst_ifu: bool, if True replaces the lambda_mst parameter by the lambda_ifu parameter (and distribution) in sampling this lens. :param lambda_scaling_property: float (optional), scaling of lambda_mst = lambda_mst_global + alpha * lambda_scaling_property :param lambda_scaling_property_beta: float (optional), scaling of lambda_mst = lambda_mst_global + beta * lambda_scaling_property_beta :param normalized: bool, if True, returns the normalized likelihood, if False, separates the constant prefactor (in case of a Gaussian 1/(sigma sqrt(2 pi)) ) to compute the reduced chi2 statistics :param kwargs_lens_properties: keyword arguments of the lens properties :param kwargs_likelihood: keyword arguments specifying the likelihood function, see individual classes for their use """ TransformedCosmography.__init__(self, z_lens=z_lens, z_source=z_source) if ani_scaling_array_list is None and ani_scaling_array is not None: ani_scaling_array_list = [ani_scaling_array] AnisotropyScalingIFU.__init__(self, anisotropy_model=anisotropy_model, ani_param_array=ani_param_array, ani_scaling_array_list=ani_scaling_array_list) LensLikelihoodBase.__init__(self, z_lens=z_lens, z_source=z_source, likelihood_type=likelihood_type, name=name, normalized=normalized, kwargs_lens_properties=kwargs_lens_properties, **kwargs_likelihood) self._num_distribution_draws = int(num_distribution_draws) self._kappa_ext_bias = kappa_ext_bias self._mst_ifu = mst_ifu if kappa_pdf is not None and kappa_bin_edges is not None: self._kappa_dist = PDFSampling(bin_edges=kappa_bin_edges, pdf_array=kappa_pdf) self._draw_kappa = True else: self._draw_kappa = False self._lambda_scaling_property = lambda_scaling_property self._lambda_scaling_property_beta = lambda_scaling_property_beta
[docs] def lens_log_likelihood(self, cosmo, kwargs_lens=None, kwargs_kin=None, kwargs_source=None): """ log likelihood of the data of a lens given a model (defined with hyper-parameters) and cosmology :param cosmo: astropy.cosmology instance :param kwargs_lens: keywords of the hyper parameters of the lens model :param kwargs_kin: keyword arguments of the kinematic model hyper parameters :param kwargs_source: keyword argument of the source model (such as SNe) :return: log likelihood of the data given the model """ # here we compute the unperturbed angular diameter distances of the lens system given the cosmology # Note: Distances are in physical units of Mpc. Make sure the posteriors to evaluate this likelihood is in the # same units ddt, dd = self.angular_diameter_distances(cosmo) kwargs_source = self._kwargs_init(kwargs_source) z_apparent_m_anchor = kwargs_source.get('z_apparent_m_anchor', 0.1) delta_lum_dist = self.luminosity_distance_modulus(cosmo, z_apparent_m_anchor) # here we effectively change the posteriors of the lens, but rather than changing the instance of the KDE we # displace the predicted angular diameter distances in the opposite direction return self.hyper_param_likelihood(ddt, dd, delta_lum_dist, kwargs_lens=kwargs_lens, kwargs_kin=kwargs_kin, kwargs_source=kwargs_source)
[docs] def hyper_param_likelihood(self, ddt, dd, delta_lum_dist, kwargs_lens=None, kwargs_kin=None, kwargs_source=None): """ log likelihood of the data of a lens given a model (defined with hyper-parameters) and cosmological distances :param ddt: time-delay distance :param dd: angular diameter distance to the deflector :param delta_lum_dist: relative luminosity distance to pivot redshift :param kwargs_lens: keywords of the hyper parameters of the lens model :param kwargs_kin: keyword arguments of the kinematic model hyper parameters :param kwargs_source: keyword argument of the source model (such as SNe) :return: log likelihood given the single lens analysis for the given hyper parameter """ kwargs_lens = self._kwargs_init(kwargs_lens) kwargs_kin = self._kwargs_init(kwargs_kin) kwargs_source = self._kwargs_init(kwargs_source) kwargs_kin_copy = copy.deepcopy(kwargs_kin) sigma_v_sys_error = kwargs_kin_copy.pop('sigma_v_sys_error', None) if self.check_dist(kwargs_lens, kwargs_kin, kwargs_source): # sharp distributions return self.log_likelihood_single(ddt, dd, delta_lum_dist, kwargs_lens, kwargs_kin_copy, kwargs_source, sigma_v_sys_error=sigma_v_sys_error) else: likelihood = 0 for i in range(self._num_distribution_draws): logl = self.log_likelihood_single(ddt, dd, delta_lum_dist, kwargs_lens, kwargs_kin_copy, kwargs_source, sigma_v_sys_error=sigma_v_sys_error) exp_logl = np.exp(logl) if np.isfinite(exp_logl) and exp_logl > 0: likelihood += exp_logl if likelihood <= 0: return -np.inf return np.log(likelihood/self._num_distribution_draws)
[docs] def log_likelihood_single(self, ddt, dd, delta_lum_dist, kwargs_lens, kwargs_kin, kwargs_source, sigma_v_sys_error=None): """ log likelihood of the data of a lens given a specific model (as a draw from hyper-parameters) and cosmological distances :param ddt: time-delay distance :param dd: angular diameter distance to the deflector :param delta_lum_dist: relative luminosity distance to pivot redshift :param kwargs_lens: keywords of the hyper parameters of the lens model :param kwargs_kin: keyword arguments of the kinematic model hyper parameters :param kwargs_source: keyword arguments of source brightness :param sigma_v_sys_error: unaccounted uncertainty in the velocity dispersion measurement :return: log likelihood given the single lens analysis for a single (random) realization of the hyper parameter distribution """ lambda_mst, kappa_ext, gamma_ppn = self.draw_lens(**kwargs_lens) # draw intrinsic source magnitude mag_source = self.draw_source(lum_dist=delta_lum_dist, **kwargs_source) ddt_, dd_, mag_source_ = self.displace_prediction(ddt, dd, gamma_ppn=gamma_ppn, lambda_mst=lambda_mst, kappa_ext=kappa_ext, mag_source=mag_source) aniso_param_array = self.draw_anisotropy(**kwargs_kin) aniso_scaling = self.ani_scaling(aniso_param_array) lnlikelihood = self.log_likelihood(ddt_, dd_, aniso_scaling=aniso_scaling, sigma_v_sys_error=sigma_v_sys_error, mu_intrinsic=mag_source_) return np.nan_to_num(lnlikelihood)
[docs] def angular_diameter_distances(self, cosmo): """ time-delay distance Ddt, angular diameter distance to the lens (dd) :param cosmo: astropy.cosmology instance (or equivalent with interpolation) :return: ddt, dd, ds in units physical Mpc """ dd = cosmo.angular_diameter_distance(z=self._z_lens).value ds = cosmo.angular_diameter_distance(z=self._z_source).value dds = cosmo.angular_diameter_distance_z1z2(z1=self._z_lens, z2=self._z_source).value ddt = (1. + self._z_lens) * dd * ds / dds return np.maximum(np.nan_to_num(ddt), 0.00001), np.maximum(np.nan_to_num(dd), 0.00001)
[docs] def luminosity_distance_modulus(self, cosmo, z_apparent_m_anchor): """ the difference in luminosity distance between a pivot redshift (z_apparent_m_anchor) and the source redshift (effectively the ratio as this is the magnitude transform) :param cosmo: astropy.cosmology instance (or equivalent with interpolation) :param z_apparent_m_anchor: redshift of pivot/anchor at which the apparent SNe brightness is defined relative to :return: lum_dist(z_source) - lum_dist(z_pivot) """ angular_diameter_distances = np.maximum(np.nan_to_num(cosmo.angular_diameter_distance(self._z_source).value), 0.00001) lum_dists = (5 * np.log10((1 + self._z_source) * (1 + self._z_source) * angular_diameter_distances)) z_anchor = z_apparent_m_anchor ang_dist_anchor = np.maximum(np.nan_to_num(cosmo.angular_diameter_distance(z_anchor).value), 0.00001) lum_dist_anchor = (5 * np.log10((1 + z_anchor) * (1 + z_anchor) * ang_dist_anchor)) delta_lum_dist = lum_dists - lum_dist_anchor return delta_lum_dist
[docs] def check_dist(self, kwargs_lens, kwargs_kin, kwargs_source): """ checks if the provided keyword arguments describe a distribution function of hyper parameters or are single values :param kwargs_lens: lens model hyper parameter keywords :param kwargs_kin: kinematic model hyper parameter keywords :param kwargs_source: source brightness hyper parameter keywords :return: bool, True if delta function, else False """ lambda_mst_sigma = kwargs_lens.get('lambda_mst_sigma', 0) # scatter in MST kappa_ext_sigma = kwargs_lens.get('kappa_ext_sigma', 0) a_ani_sigma = kwargs_kin.get('a_ani_sigma', 0) beta_inf_sigma = kwargs_kin.get('beta_inf_sigma', 0) sne_sigma = kwargs_source.get('sigma_sne', 0) if a_ani_sigma == 0 and lambda_mst_sigma == 0 and kappa_ext_sigma == 0 and beta_inf_sigma == 0 \ and sne_sigma == 0: if self._draw_kappa is False: return True return False
[docs] def draw_lens(self, lambda_mst=1, lambda_mst_sigma=0, kappa_ext=0, kappa_ext_sigma=0, gamma_ppn=1, lambda_ifu=1, lambda_ifu_sigma=0, alpha_lambda=0, beta_lambda=0): """ draws a realization of a specific model from the hyper-parameter distribution :param lambda_mst: MST transform :param lambda_mst_sigma: spread in the distribution :param kappa_ext: external convergence mean in distribution :param kappa_ext_sigma: spread in the distribution :param gamma_ppn: Post-Newtonian parameter :param lambda_ifu: secondary lambda_mst parameter for subset of lenses specified for :param lambda_ifu_sigma: secondary lambda_mst_sigma parameter for subset of lenses specified for :param alpha_lambda: float, linear slope of the lambda_int scaling relation with lens quantity self._lambda_scaling_property :param beta_lambda: float, a second linear slope of the lambda_int scaling relation with lens quantity self._lambda_scaling_property_beta :return: draw from the distributions """ if self._mst_ifu is True: lambda_lens = lambda_ifu + alpha_lambda * self._lambda_scaling_property \ + beta_lambda * self._lambda_scaling_property_beta lambda_mst_draw = np.random.normal(lambda_lens, lambda_ifu_sigma) else: lambda_lens = lambda_mst + alpha_lambda * self._lambda_scaling_property \ + beta_lambda * self._lambda_scaling_property_beta lambda_mst_draw = np.random.normal(lambda_lens, lambda_mst_sigma) if self._draw_kappa is True: kappa_ext_draw = self._kappa_dist.draw_one elif self._kappa_ext_bias is True: kappa_ext_draw = np.random.normal(kappa_ext, kappa_ext_sigma) else: kappa_ext_draw = 0 return lambda_mst_draw, kappa_ext_draw, gamma_ppn
[docs] @staticmethod def draw_source(mu_sne=1, sigma_sne=0, lum_dist=0, **kwargs): """ draws a source magnitude from a distribution specified by population parameters :param mu_sne: mean magnitude of SNe :param sigma_sne: std of magnitude distribution of SNe relative to the mean magnitude :param lum_dist: luminosity distance (astronomical magnitude scaling of defined brightness to the source redshift) :return: realization of source amplitude given distribution """ # draw apparent magnitude at pivot luminosity distance (z=0.1) mag_draw = np.random.normal(loc=mu_sne, scale=sigma_sne) # move apparent magnitude to redshift of source with relative luminosity distance mag_source = mag_draw + lum_dist # return linear amplitude with base log 10 return mag_source
[docs] def sigma_v_measured_vs_predict(self, cosmo, kwargs_lens=None, kwargs_kin=None): """ mean and error covariance of velocity dispersion measurement mean and error covariance of velocity dispersion predictions :param cosmo: astropy.cosmology instance :param kwargs_lens: keywords of the hyper parameters of the lens model :param kwargs_kin: keyword arguments of the kinematic model hyper parameters :return: sigma_v_measurement, cov_error_measurement, sigma_v_predict_mean, cov_error_predict """ # if no kinematics is provided, return None's if self.likelihood_type not in ['DdtHistKin', 'IFUKinCov', 'DdtGaussKin']: return None, None, None, None if kwargs_lens is None: kwargs_lens = {} if kwargs_kin is None: kwargs_kin = {} kwargs_kin_copy = copy.deepcopy(kwargs_kin) sigma_v_sys_error = kwargs_kin_copy.pop('sigma_v_sys_error', None) ddt, dd = self.angular_diameter_distances(cosmo) sigma_v_measurement, cov_error_measurement = self.sigma_v_measurement(sigma_v_sys_error=sigma_v_sys_error) sigma_v_predict_list = [] sigma_v_predict_mean = np.zeros_like(sigma_v_measurement) cov_error_predict = np.zeros_like(cov_error_measurement) for i in range(self._num_distribution_draws): lambda_mst, kappa_ext, gamma_ppn = self.draw_lens(**kwargs_lens) ddt_, dd_, _ = self.displace_prediction(ddt, dd, gamma_ppn=gamma_ppn, lambda_mst=lambda_mst, kappa_ext=kappa_ext) aniso_param_array = self.draw_anisotropy(**kwargs_kin_copy) aniso_scaling = self.ani_scaling(aniso_param_array) sigma_v_predict_i, cov_error_predict_i = self.sigma_v_prediction(ddt_, dd_, aniso_scaling=aniso_scaling) sigma_v_predict_mean += sigma_v_predict_i cov_error_predict += cov_error_predict_i sigma_v_predict_list.append(sigma_v_predict_i) sigma_v_predict_mean /= self._num_distribution_draws cov_error_predict /= self._num_distribution_draws sigma_v_mean_std = np.std(sigma_v_predict_list, axis=0) cov_error_predict += np.outer(sigma_v_mean_std, sigma_v_mean_std) return sigma_v_measurement, cov_error_measurement, sigma_v_predict_mean, cov_error_predict
[docs] def ddt_dd_model_prediction(self, cosmo, kwargs_lens=None): """ predicts the model uncertainty corrected ddt prediction of the applied model (e.g. power-law) :param cosmo: astropy.cosmology instance :param kwargs_lens: keywords of the hyper parameters of the lens model :return: ddt_model mean, ddt_model sigma, dd_model mean, dd_model sigma """ if kwargs_lens is None: kwargs_lens = {} ddt, dd = self.angular_diameter_distances(cosmo) ddt_draws = [] dd_draws = [] for i in range(self._num_distribution_draws): lambda_mst, kappa_ext, gamma_ppn = self.draw_lens(**kwargs_lens) ddt_, dd_, _ = self.displace_prediction(ddt, dd, gamma_ppn=gamma_ppn, lambda_mst=lambda_mst, kappa_ext=kappa_ext) ddt_draws.append(ddt_) dd_draws.append(dd_) return np.mean(ddt_draws), np.std(ddt_draws), np.mean(dd_draws), np.std(dd_draws)
@staticmethod def _kwargs_init(kwargs=None): """ :param kwargs: keyword argument or None :return: keyword argument """ if kwargs is None: kwargs = {} return kwargs