import copy
import numpy as np
from hierarc.LensPosterior.base_config import BaseLensConfig
[docs]
class KinConstraints(BaseLensConfig):
"""Class that manages constraints from Integral Field Unit spectral observations."""
def __init__(
self,
z_lens,
z_source,
theta_E,
theta_E_error,
gamma,
gamma_error,
r_eff,
r_eff_error,
sigma_v_measured,
kwargs_aperture,
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
sigma_v_error_independent=None,
sigma_v_error_covariant=None,
sigma_v_error_cov_matrix=None,
kwargs_lens_light=None,
lens_light_model_list=["HERNQUIST"],
lens_model_list=None,
MGE_light=False,
kwargs_mge_light=None,
hernquist_approx=True,
sampling_number=1000,
num_psf_sampling=100,
num_kin_sampling=1000,
multi_observations=False,
cosmo_fiducial=None,
gamma_in_scaling=None,
log_m2l_scaling=None,
gamma_pl_scaling=None,
):
"""
:param z_lens: lens redshift
:param z_source: source redshift
:param theta_E: Einstein radius (in arc seconds)
:param theta_E_error: 1-sigma error on Einstein radius
:param gamma: power-law slope (2 = isothermal) estimated from imaging data
:param gamma_error: 1-sigma uncertainty on power-law slope
:param r_eff: half-light radius of the deflector (arc seconds)
:param r_eff_error: uncertainty on half-light radius
:param sigma_v_measured: numpy array of IFU velocity dispersion of the main
deflector in km/s
:param sigma_v_error_independent: numpy array of 1-sigma uncertainty in velocity
dispersion of the IFU
observation independent of each other
:param sigma_v_error_covariant: covariant error in the measured kinematics
shared among all IFU measurements
:param sigma_v_error_cov_matrix: error covariance matrix in the sigma_v
measurements (km/s)^2
:type sigma_v_error_cov_matrix: nxn matrix with n the length of the
sigma_v_measured array
:param kwargs_aperture: spectroscopic aperture keyword arguments, see
lenstronomy.Galkin.aperture for options
:param kwargs_seeing: seeing condition of spectroscopic observation, corresponds
to kwargs_psf in the GalKin
module specified in lenstronomy.GalKin.psf
:param kwargs_numerics_galkin: numerical settings for the integrated
line-of-sight velocity dispersion
:param anisotropy_model: type of stellar anisotropy model. See details in
MamonLokasAnisotropy() class of lenstronomy.GalKin.anisotropy
:param lens_model_list: keyword argument list of lens model (optional)
:param kwargs_lens_light: keyword argument list of lens light model (optional)
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition
routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the
light profile
:param multi_observations: bool, if True, interprets kwargs_aperture and
kwargs_seeing as lists of multiple observations
:param cosmo_fiducial: astropy.cosmology instance, if None,
uses astropy's default
:param gamma_in_scaling: array of gamma_in parameter to be interpolated (optional, otherwise None)
:param log_m2l_scaling: array of log_m2l parameter to be interpolated (optional, otherwise None)
:param gamma_pl_scaling: array of mass density profile power-law slope values (optional, otherwise None)
"""
self._sigma_v_measured = np.array(sigma_v_measured)
self._sigma_v_error_independent = np.array(sigma_v_error_independent)
self._sigma_v_error_covariant = sigma_v_error_covariant
self._sigma_v_error_cov_matrix = sigma_v_error_cov_matrix
self._kwargs_lens_light = kwargs_lens_light
self._anisotropy_model = anisotropy_model
BaseLensConfig.__init__(
self,
z_lens,
z_source,
theta_E,
theta_E_error,
gamma,
gamma_error,
r_eff,
r_eff_error,
kwargs_aperture,
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
lens_model_list=lens_model_list,
kwargs_lens_light=kwargs_lens_light,
lens_light_model_list=lens_light_model_list,
MGE_light=MGE_light,
kwargs_mge_light=kwargs_mge_light,
hernquist_approx=hernquist_approx,
sampling_number=sampling_number,
num_psf_sampling=num_psf_sampling,
num_kin_sampling=num_kin_sampling,
multi_observations=multi_observations,
cosmo_fiducial=cosmo_fiducial,
gamma_in_scaling=gamma_in_scaling,
log_m2l_scaling=log_m2l_scaling,
gamma_pl_scaling=gamma_pl_scaling,
)
[docs]
def j_kin_draw(self, kwargs_anisotropy, gamma_pl=None, no_error=False):
"""One simple sampling realization of the dimensionless kinematics of the model.
:param kwargs_anisotropy: keyword argument of anisotropy setting
:param gamma_pl: power law slope, if None, draws from measurement uncertainty,
otherwise takes at fixed value
:type gamma_pl: float or None
:param no_error: bool, if True, does not render from the uncertainty but uses
the mean values instead
:return: dimensionless kinematic component J() Birrer et al. 2016, 2019
"""
theta_E_draw, gamma_draw, r_eff_draw, delta_r_eff = self.draw_lens(
gamma_pl=gamma_pl, no_error=no_error
)
kwargs_lens = [
{"theta_E": theta_E_draw, "gamma": gamma_draw, "center_x": 0, "center_y": 0}
]
if self._kwargs_lens_light is None:
kwargs_light = [{"Rs": r_eff_draw * 0.551, "amp": 1.0}]
else:
kwargs_light = copy.deepcopy(self._kwargs_lens_light)
for kwargs in kwargs_light:
if "Rs" in kwargs:
kwargs["Rs"] *= delta_r_eff
if "R_sersic" in kwargs:
kwargs["R_sersic"] *= delta_r_eff
j_kin = self.velocity_dispersion_map_dimension_less(
kwargs_lens=kwargs_lens,
kwargs_lens_light=kwargs_light,
kwargs_anisotropy=kwargs_anisotropy,
r_eff=r_eff_draw,
theta_E=theta_E_draw,
gamma=gamma_draw,
)
return j_kin
[docs]
def hierarchy_configuration(self, num_sample_model=20):
"""Routine to configure the likelihood to be used in the hierarchical sampling.
In particular, a default configuration is set to compute the Gaussian
approximation of Ds/Dds by sampling the posterior and the estimate of the
variance of the sample. The anisotropy scaling is then performed. Different
anisotropy models are supported.
:param num_sample_model: number of samples drawn from the lens and light model
posterior to compute the dimensionless kinematic component J()
:return: keyword arguments
"""
j_model_list, error_cov_j_sqrt = self.model_marginalization(num_sample_model)
ani_scaling_array_list = self.anisotropy_scaling()
error_cov_measurement = self.error_cov_measurement
# configuration keyword arguments for the hierarchical sampling
kwargs_likelihood = {
"z_lens": self._z_lens,
"z_source": self._z_source,
"likelihood_type": "IFUKinCov",
"sigma_v_measurement": self._sigma_v_measured,
"anisotropy_model": self._anisotropy_model,
"j_model": j_model_list,
"error_cov_measurement": error_cov_measurement,
"error_cov_j_sqrt": error_cov_j_sqrt,
"kin_scaling_param_list": self.param_name_list,
"j_kin_scaling_param_axes": self.kin_scaling_param_array,
"j_kin_scaling_grid_list": ani_scaling_array_list,
}
prior_list = []
if "gamma_pl" in self.param_name_list:
prior_list.append(["gamma_pl", self._gamma, self._gamma_error])
# TODO: make sure to add other priors if needed or available
# if "gamma_in" in self._param_name_list:
# prior_list.append(["gamma_in"])
kwargs_likelihood["prior_list"] = prior_list
# if "gamma_pl" in self.param_name_list:
# kwargs_likelihood["gamma_pl_sampling"] = True
return kwargs_likelihood
[docs]
def model_marginalization(self, num_sample_model=20):
"""
:param num_sample_model: number of samples drawn from the lens and light model
posterior to compute the dimensionless kinematic component J()
:return: J() as array for each measurement prediction, covariance matrix in
sqrt(J)
"""
num_data = len(self._sigma_v_measured)
j_kin_matrix = np.zeros(
(num_sample_model, num_data)
) # matrix that contains the sampled J() distribution
for i in range(num_sample_model):
j_kin = self.j_kin_draw(
self.kwargs_anisotropy_base, no_error=False, **self.kwargs_lens_base
)
j_kin_matrix[i, :] = j_kin
error_cov_j_sqrt = np.cov(np.sqrt(j_kin_matrix.T))
j_model_list = np.mean(j_kin_matrix, axis=0)
return j_model_list, error_cov_j_sqrt
@property
def error_cov_measurement(self):
"""Error covariance matrix of the measured velocity dispersion data points This
is either calculated from the diagonal 'sigma_v_error_independent' and the off-
diagonal 'sigma_v_error_covariant' terms, or directly from the
'sigma_v_error_cov_matrix' if provided.
:return: nxn matrix of the error covariances in the velocity dispersion
measurements (km/s)^2
"""
if self._sigma_v_error_cov_matrix is None:
if (
self._sigma_v_error_independent is None
or self._sigma_v_error_covariant is None
):
raise ValueError(
"sigma_v_error_independent and sigma_v_error_covariant need to be provided as arrays "
"of the same length as sigma_v_measurement."
)
error_covariance_array = (
np.ones_like(self._sigma_v_error_independent)
* self._sigma_v_error_covariant
)
error_cov_measurement = np.outer(
error_covariance_array, error_covariance_array
) + np.diag(self._sigma_v_error_independent**2)
return error_cov_measurement
else:
return self._sigma_v_error_cov_matrix
[docs]
def anisotropy_scaling(self):
"""
:return: anisotropy scaling grid along the axes defined by ani_param_array
"""
j_ani_0 = self.j_kin_draw(
self.kwargs_anisotropy_base, no_error=True, **self.kwargs_lens_base
)
return self._anisotropy_scaling_relative(j_ani_0)
def _anisotropy_scaling_relative(self, j_ani_0):
"""Anisotropy scaling relative to a default J prediction.
:param j_ani_0: default J() prediction for default anisotropy
:return: list of arrays (for the number of measurements) according to anisotropy
scaling
"""
num_data = len(self._sigma_v_measured)
len_list = [len(a) for a in self.kin_scaling_param_array]
ani_scaling_array_list = [np.zeros(len_list) for _ in range(num_data)]
num = self.num_scaling_dim
if num == 1:
for i, param in enumerate(self.kin_scaling_param_array[0]):
param_array = [param]
kwargs_ani, kwargs_lens = self.param_array2kwargs(
param_array=param_array
)
kwargs_anisotropy = self.anisotropy_kwargs(**kwargs_ani)
j_kin_ani = self.j_kin_draw(
kwargs_anisotropy, no_error=True, **kwargs_lens
)
for s, j_kin in enumerate(j_kin_ani):
ani_scaling_array_list[s][i] = j_kin / j_ani_0[s]
elif num == 2:
for i, param_i in enumerate(self.kin_scaling_param_array[0]):
for j, param_j in enumerate(self.kin_scaling_param_array[1]):
param_array = [param_i, param_j]
kwargs_ani, kwargs_lens = self.param_array2kwargs(
param_array=param_array
)
kwargs_anisotropy = self.anisotropy_kwargs(**kwargs_ani)
j_kin_ani = self.j_kin_draw(
kwargs_anisotropy, no_error=True, **kwargs_lens
)
for s, j_kin in enumerate(j_kin_ani):
ani_scaling_array_list[s][i, j] = j_kin / j_ani_0[s]
elif num == 3:
for i, param_i in enumerate(self.kin_scaling_param_array[0]):
for j, param_j in enumerate(self.kin_scaling_param_array[1]):
for k, param_k in enumerate(self.kin_scaling_param_array[2]):
param_array = [param_i, param_j, param_k]
kwargs_ani, kwargs_lens = self.param_array2kwargs(
param_array=param_array
)
kwargs_anisotropy = self.anisotropy_kwargs(**kwargs_ani)
j_kin_ani = self.j_kin_draw(
kwargs_anisotropy, no_error=True, **kwargs_lens
)
for s, j_kin in enumerate(j_kin_ani):
ani_scaling_array_list[s][i, j, k] = j_kin / j_ani_0[s]
else:
ValueError(
"Kin scaling with parameter dimension %s not supported, chose between 1-3."
% num
)
return ani_scaling_array_list