hierarc.Util package¶
Submodules¶
hierarc.Util.distribution_util module¶
hierarc.Util.ifu_util module¶
This file contains routines to process the data format of the SLACS IFU data set to be binned in radial annuli and for error estimates.
- hierarc.Util.ifu_util.binned_dispersion(dispersion_map, weight_map, flux_map, fiber_scale, r_bins)[source]¶
- Parameters:
dispersion_map – 2d array of measured velocity dispersion for each fiber
weight_map – uncertainty weight of the measurement (i.e. 1/sigma**2) for each fiber
flux_map – array of flux for each fiber
fiber_scale – separation of the fibers (map pixels)
r_bins – array, bins in radial directions
- Returns:
averaged velocity dispersion measurement for each radial bin and estimated uncertainty thereof
- hierarc.Util.ifu_util.binned_total(dispersion_map, weight_map_disp, velocity_map, weight_map_v, flux_map, fiber_scale, r_bins)[source]¶
- Parameters:
dispersion_map – 2d array of measured velocity dispersion for each fiber
weight_map_disp – uncertainty weight of the measurement in velocity dispersion (i.e. 1/sigma**2) for each fiber
velocity_map – 2d array of measured velocity offset for each fiber
weight_map_v – uncertainty weight of the measurement in systemic velocity (i.e. 1/sigma**2) for each fiber
flux_map – array of flux for each fiber
fiber_scale – separation of the fibers (map pixels)
r_bins – array, bins in radial directions
- Returns:
sqrt(v^2 + sigma^2) averaged integrated line dispersion when averaged over azimuthal bins
- hierarc.Util.ifu_util.binned_velocity(velocity_map, weight_map, flux_map, fiber_scale, r_bins)[source]¶
- Parameters:
velocity_map – 2d array of measured velocity offset for each fiber
weight_map – uncertainty weight of the velocity measurement (i.e. 1/sigma**2) for each fiber
flux_map – array of flux for each fiber
fiber_scale – separation of the fibers (map pixels)
r_bins – array, bins in radial directions
- Returns:
average velocity components with luminosity weights, weight on v^2 error
hierarc.Util.likelihood_util module¶
- hierarc.Util.likelihood_util.cov_error_create(error_independent, error_covariance)[source]¶
Generates an error covariance matrix from a set of independent uncertainties combined with a fully covariant term.
- Parameters:
error_independent – array of Gaussian 1-sigma uncertainties
error_covariance – float, shared covariant error among all data points. So if all data points are off by 1-sigma, then the log likelihood is 1-sigma
- Returns:
error covariance matrix