from hierarc.Sampling.ParamManager.kin_param import KinParam
from hierarc.Sampling.ParamManager.cosmo_param import CosmoParam
from hierarc.Sampling.ParamManager.lens_param import LensParam
from hierarc.Sampling.ParamManager.source_param import SourceParam
[docs]class ParamManager(object):
"""
class for managing the parameters involved
"""
def __init__(self, cosmology, ppn_sampling=False, lambda_mst_sampling=False, lambda_mst_distribution='NONE',
anisotropy_sampling=False, anisotropy_model='OM', anisotropy_distribution='NONE',
kappa_ext_sampling=False, kappa_ext_distribution='NONE', lambda_ifu_sampling=False,
lambda_ifu_distribution='NONE', alpha_lambda_sampling=False, beta_lambda_sampling=False,
sigma_v_systematics=False,
sne_apparent_m_sampling=False, sne_distribution='GAUSSIAN', z_apparent_m_anchor=0.1,
log_scatter=False,
kwargs_lower_cosmo=None, kwargs_upper_cosmo=None,
kwargs_fixed_cosmo=None, kwargs_lower_lens=None, kwargs_upper_lens=None, kwargs_fixed_lens=None,
kwargs_lower_kin=None, kwargs_upper_kin=None, kwargs_fixed_kin=None,
kwargs_lower_source=None, kwargs_upper_source=None, kwargs_fixed_source=None):
"""
:param cosmology: string describing cosmological model
:param ppn_sampling: post-newtonian parameter sampling
:param lambda_mst_sampling: bool, if True adds a global mass-sheet transform parameter in the sampling
:param lambda_mst_distribution: string, distribution function of the MST transform
:param lambda_ifu_sampling: bool, if True samples a separate lambda_mst for a second (e.g. IFU) data set
independently
:param alpha_lambda_sampling: bool, if True samples a parameter alpha_lambda, which scales lambda_mst linearly
according to a predefined quantity of the lens
:param beta_lambda_sampling: bool, if True samples a parameter beta_lambda, which scales lambda_mst linearly
according to a predefined quantity of the lens
:param lambda_ifu_distribution: string, distribution function of the lambda_ifu parameter
:param anisotropy_sampling: bool, if True adds a global stellar anisotropy parameter that alters the single lens
kinematic prediction
:param anisotropy_distribution: string, indicating the distribution function of the anisotropy model
:param sne_apparent_m_sampling: boolean, if True, samples/queries SNe unlensed magnitude distribution
(not intrinsic magnitudes but apparent!)
:param sne_distribution: string, apparent non-lensed brightness distribution (in linear space).
Currently supports:
'GAUSSIAN': Gaussian distribution
:param sigma_v_systematics: bool, if True samples paramaters relative to systematics in the velocity dispersion
measurement
:param log_scatter: boolean, if True, samples the Gaussian scatter amplitude in log space (and thus flat prior in log)
"""
self._kin_param = KinParam(anisotropy_sampling=anisotropy_sampling, anisotropy_model=anisotropy_model,
distribution_function=anisotropy_distribution, log_scatter=log_scatter,
sigma_v_systematics=sigma_v_systematics, kwargs_fixed=kwargs_fixed_kin)
self._cosmo_param = CosmoParam(cosmology=cosmology, ppn_sampling=ppn_sampling, kwargs_fixed=kwargs_fixed_cosmo)
self._lens_param = LensParam(lambda_mst_sampling=lambda_mst_sampling,
lambda_mst_distribution=lambda_mst_distribution,
lambda_ifu_sampling=lambda_ifu_sampling,
lambda_ifu_distribution=lambda_ifu_distribution,
kappa_ext_sampling=kappa_ext_sampling,
kappa_ext_distribution=kappa_ext_distribution,
alpha_lambda_sampling=alpha_lambda_sampling,
beta_lambda_sampling=beta_lambda_sampling,
log_scatter=log_scatter,
kwargs_fixed=kwargs_fixed_lens)
self._source_param = SourceParam(sne_apparent_m_sampling=sne_apparent_m_sampling,
sne_distribution=sne_distribution, z_apparent_m_anchor=z_apparent_m_anchor,
kwargs_fixed=kwargs_fixed_source)
self._kwargs_upper_cosmo, self._kwargs_lower_cosmo = kwargs_upper_cosmo, kwargs_lower_cosmo
self._kwargs_upper_lens, self._kwargs_lower_lens = kwargs_upper_lens, kwargs_lower_lens
self._kwargs_upper_kin, self._kwargs_lower_kin = kwargs_upper_kin, kwargs_lower_kin
self._kwargs_upper_source, self._kwargs_lower_source = kwargs_upper_source, kwargs_lower_source
@property
def num_param(self):
"""
number of parameters being sampled
:return: integer
"""
return len(self.param_list())
[docs] def param_list(self, latex_style=False):
"""
:param latex_style: bool, if True returns strings in latex symbols, else in the convention of the sampler
:return: list of the free parameters being sampled in the same order as the sampling
"""
list_param = []
list_param += self._cosmo_param.param_list(latex_style=latex_style)
list_param += self._lens_param.param_list(latex_style=latex_style)
list_param += self._kin_param.param_list(latex_style=latex_style)
list_param += self._source_param.param_list(latex_style=latex_style)
return list_param
[docs] def args2kwargs(self, args):
"""
:param args: sampling argument list
:return: keyword argument list with parameter names
"""
i = 0
kwargs_cosmo, i = self._cosmo_param.args2kwargs(args, i=i)
kwargs_lens, i = self._lens_param.args2kwargs(args, i=i)
kwargs_kin, i = self._kin_param.args2kwargs(args, i=i)
kwargs_source, i = self._source_param.args2kwargs(args, i=i)
return kwargs_cosmo, kwargs_lens, kwargs_kin, kwargs_source
[docs] def kwargs2args(self, kwargs_cosmo=None, kwargs_lens=None, kwargs_kin=None, kwargs_source=None):
"""
:param kwargs_cosmo: keyword argument list of parameters for cosmology sampling
:param kwargs_lens: keyword argument list of parameters for lens model sampling
:param kwargs_kin: keyword argument list of parameters for kinematic sampling
:param kwargs_source: keyword arguments of parameters of source brightness
:return: sampling argument list in specified order
"""
args = []
args += self._cosmo_param.kwargs2args(kwargs_cosmo)
args += self._lens_param.kwargs2args(kwargs_lens)
args += self._kin_param.kwargs2args(kwargs_kin)
args += self._source_param.kwargs2args(kwargs_source)
return args
[docs] def cosmo(self, kwargs_cosmo):
"""
:param kwargs_cosmo: keyword arguments of parameters (can include others not used for the cosmology)
:return: astropy.cosmology instance
"""
return self._cosmo_param.cosmo(kwargs_cosmo)
@property
def param_bounds(self):
"""
:return: argument list of the hard bounds in the order of the sampling
"""
lower_limit = self.kwargs2args(kwargs_cosmo=self._kwargs_lower_cosmo, kwargs_lens=self._kwargs_lower_lens,
kwargs_kin=self._kwargs_lower_kin, kwargs_source=self._kwargs_lower_source)
upper_limit = self.kwargs2args(kwargs_cosmo=self._kwargs_upper_cosmo, kwargs_lens=self._kwargs_upper_lens,
kwargs_kin=self._kwargs_upper_kin, kwargs_source=self._kwargs_upper_source)
return lower_limit, upper_limit